
UNCLASSIFIED

AFIT/EN/TR/94-09

Air Force Institute of Technology

An Ada Binding for ODMG-93

Stephen R. Lindsay Mark A. Roth
Capt, USAF Lt Col, USAF

10 Nov 94

19941202 096
Approved for public release; distribution unlimited

An Ada Binding for ODMG-93

Stephen R. Lindsay

Mark A. Roth*

Air Force Institute of Technology

2950 P St, Bldg 642

Wright-Patterson AFB, Ohio 45433-7765

(513) 255-2024 FAX: (513) 476-4055
{slindsay|mroth}@hawkeye. afit.af.mil

Abstract

An Ada 9X binding to the proposed object database standard, ODMG-93, is presented.
The major decisions necessary for such an effort are described. The approach allows Ada
programmers to use a single language to access object-oriented database functionality regardless
of vendor. Briefly mentioned is our successful feasibility test using an Ada 83 compiler with
Ada package implementations for ObjectStore and ITASCA.

1 Introduction

This paper identifies the major decisions involved in creating an Ada language binding for the
Object Definition Language (ODL), Object Manipulation Language (OML), and Object Query
Language (OQL) proposed in the ODMG-93 object database standard [1:11-81]. As with the other
ODMG-93 language bindings, the primary goal is for Ada programmers to feel they are using a
single language to access the underlying ODBMS functionality.

Similar to the steps in creating a C++ ODBMS application [1:86], Figure 1 illustrates the
process for creating an application in Ada. Object declarations in the form of package specifications
are scanned by the ODL preprocessor, which translates them to the corresponding schema and
database files in addition to generating any required auxiliary packages. An Ada OML preprocessor
is not required, as all ODMG-93 constructs manipulating objects may be defined in Ada 9X with
respect to a root ancestor object (Section 2). Likewise, an Ada OQL preprocessor is not required
due to the loosely coupled approach for implementing queries (Section 5). The resulting source
code along with the Ada binding is compiled and then linked with the ODBMS to produce an
application.

The object database standard integrates well with Ada's packaging approach to encapsulation
and information hiding; a single package specification independent of any vendor's ODBMS can
be used to provide access to a category of ODMG-93 constructs using the syntax set forth in the
standard. The corresponding vendor-specific package bodies can implement them for a particular

'Current address for Mark Roth: USSTRATCOM/J673, 901 SAC Blvd, STE 2B10, Offutt AFB, NE 68113-6600,
(402) 294-4616, FAX: (402) 294-1020, rothm@j67.stratcom.af.mil

:n hör

fi-(\

□
D

ikL

Database Schema
and Corresponding

Files

Object
Declarations

in Ada ODL

ODL

Preprocessor

Generated

Ada Object

Declarations

i£_

AdaOML

andOQL

JsH.

Ada Compiler

ODBMS

Runtime
Object

Code

ik

Linker

Executable

Application

Figure 1: Creating an Executable Ada ODBMS Application

system. Ada's use clauses can then be incorporated to make the constructs appear as a natural
extension to the language.

Ada 83 is the language commonly referred to simply as "Ada," but because of its inability to
model inheritance it cannot be used with the standard unless a convention for modeling inheritance
is decided upon. Ada 9X, the object-oriented version of Ada 83 currently in the final standardization
process, is the only Ada language that can be used "as is" with ODMG-93. As the new compilers
will soon become available this paper concentrates on Ada 9X, and unless explicitly stated, "Ada"
will reference Ada 9X instead of Ada 83.

In the rest of this paper we discuss the binding approach we used for Ada 9X utilizing the new
inheritance capabilities of the language. We then discuss and provide examples of the binding for
the ODL, OML, and OQL in ODMG-93. Finally, we discuss our feasibility test using Ada 83 and
package bodies for ObjectStore and ITASCA. The complete binding is presented in Appendix A.

2 Language Binding Approach

The most important decision for the Ada ODMG language binding is the overall approach to object
definition and manipulation, as this decision then dictates the definition of all remaining ODL and
OML constructs. The approach chosen for Ada is termed inheritance-based.

This approach is similar to the "Ref-based" approach for the ODMG-93 C++ binding [1:84-85],
which refers to instances of persistence-capable database classes using the template class Ref, or a
reference to the instance. In the Ref-based approach, the ODL preprocessor automatically defines
the class Ref <X> for every database class X specified by the user. The template class allows objects
to be accessed in a manner similar to C++ pointer types, with additional facilities for guaranteeing
integrity in pointers to persistent objects [1:99]. Furthermore, the class Pobject is defined as a
superclass of all persistence-capable objects, allowing the parameters to ODMG contructs to be
defined as Ref <Pobject> [1:108]. The ability of Ada 9X to model inheritance allows it to use an
approach quite similar to the C++ Ref-based approach.

Figure 2 illustrates one possible declaration for package Persistent, from which all persistence-
capable database classes may be derived. A new persistent object is created and placed in a database
"near" (implementation dependent) a given clustering object, if provided. Like the C++ template
class Ref <>, additional mechanisms for guaranteeing integrity can be incorporated in this package.

A persistence-capable class X may now be defined using a modified version of ROMAN-9X
notation [2:390], one of several techniques for modeling inheritance in Ada 9X, as shown in Figure
3. ROMAN-9X defines the object record using keyword private, preventing the user from accessing
these attributes directly (as shown in Figure 2). Here, the record definition is moved to the public
section of the package, eliminating the need to define accessor routines for each attribute. New
attributes may be added within the record, and methods may be introduced as procedures and
functions. Figure 4 shows the definition of an example ODMG-93 operation using the inheritence-
based approach.

3 Ada ODL

Having selected the approach for designing the interface, the Ada language binding for the remaining
ODMG-93 constructs follows naturally. The database schema is defined as a set of packages, each

package Persistent is

type Object is private;

type Reference is access all Object'Class;

function Create(A_Database : in Database.Object;

Clustering : in Reference := null)

return Object;

procedure Delete(An_0bject : in Object);

procedure Mark_Modified(An_Object : in out Object);

private

String_Max : constant := 300;

type Object is

record

Name : String(l..String_Max);

Modified : Boolean;

end record;

end Persistent;

Figure 2: Superclass For Ada Persistence-capable Classes

with Persistent;

package X is

type Object is new Persistent • Obj act with
record

Attribute. One : Attribute _0ne .Type;

Attribute. Two : Attribute _Two -Type;

end record;

type Reference is access all Dbje :t'Class;

end X;

Figure 3: Example Ada Persistence-capable Class

procedure Name_Object(An_Object

Name

in out Persistent.Object;

in String);

Figure 4: Example Inheritence-based Ada Operation

with Person, Student, Set;

package Faculty is

package Student_Set is new Set(Student.Obj ect) ;

type Object is new 3erson. Object with

record

Advisees : Student_Set .Object inverse Student Advisor;

end record;

end Faculty;

Figure 5: Example Relationship Definition

representing a unique object class. As shown in Figure 3, attributes are defined for an object class
in Ada by extending the attributes of the record defined in the superclass package.

Relationships between objects may be defined using the collection generic Set (discussed in
Section 4.2) and keyword inverse, specifying inverse traversal paths. Because the keyword inverse
is not part of standard Ada, it will need to be removed by the preprocessor before compilation. An
Ada object class may then declare a relationship using the syntax shown in Figure 5.

Consistent with the definition of any Ada abstract data type, operations are defined by the
procedures and functions in the package representing an object class.

4 Ada OML

This section discusses binding ODMG-93's OML to Ada. Every effort must be aimed toward adher-
ence to the principle that manipulating persistent objects is syntactically equivalent to manipulating
transient objects.

4.1 Object Creation, Deletion, and Modification

The object creation and deletion operations are best defined in package Persistent and refined
in the persistent-capable packages. Consistent with the other ODMG-93 language bindings, Ada

with Persistent, Database, Person;

package Faculty is

function

Create(Database in Database.Object;

Clustering in Persistent.Reference = null;
Name in Name_String = (others => ' ');

SSAN in Integer = 0;
Birthday in Birthday_String = (others => ' ');

Dept in Department_Type = N0_DEPT;
Salary in Float = 0.0)

return Object is

Instance : Object;

begin

Instance := Person Create(Database, Clustering , Name,

SSAN, Birthday);

Instance.Dept := Dept;

Instance.Salary := Salary;

return Instance;

end Create;

Figure 6: Example Object Creation

programmers must have the ability to manipulate both persistent and transient instances of objects.
Overloading the Create and Delete operations can accomplish this.

To create persistent instances, the user must produce a Create function with a parameter of type
Database. Ob j ect; to incorporate clustering, an additional parameter of type Persistent. Reference
may be included. The same applies to the Delete procedure. Attribute initial values are assigned
as default values in the function stub. Figure 6 illustrates this concept. Similar to creating an
instance of an inherited class in C++, the ancestor instances are created first. When the instance
of root class Persistent is created, the persistent object is placed in the corresponding database
near the given clustering object, if applicable.

If the user also wishes to manipulate transient instances, he or she is responsible for defining one
or more additional Create and Delete routines without including the database or clustering pa-
rameters. These routines will simply be standard Ada functions and procedures based on the user's
needs. Consistent with the C++ binding, all other operations for manipulating persistent objects
can also be used to manipulate transient objects, with the exception of queries and transactions.

An object can be modified by manipulating the attribute and relationship properties defining
its state.

with Persistent, Collection;

package Relationships is

package Persistent_Set is new Set(Persistent.Object);

procedure Relate_One_To_Many_Create

(Relationship

An_0bject

RelatedSet

in String;

in out Persistent.Object;

in Persistent_Set.Object);

procedure Relate_One_To_One_Create

(Relationship

An_0bject

Related_0bject

in String;

in out Persistent.Object;

in out Persistent.Object);

Figure 7: Example Relationship Creation Operations

4.1.1 Attributes

Attributes may be manipulated by the programmer directly using Ada's standard notation for
manipulating record fields. If the record definition is moved to the private section of the package,
accessor procedures and functions for each attribute will be required. However, these operations
may be added by the ODL preprocessor rather than the programmer. No accessor procedures
or functions should be allowed on relationship attributes, as these are best manipulated with the
operations in package Relationship.

4.1.2 Relationships

Package Relationship can be used to define the ODMG-93 relationship operations. Figure 7
illustrates the creation operations for one-to-one and one-to-many relationships. One-to-one rela-
tionships must be implemented as pointers to other objects, rather than a copy of the object, to
preserve data integrity. Because collections are defined as pointers (in Section 4.2), an additional
level of dereferencing is not required for one-to-many and many-to-many relationships.

4.2 Collections

Similar to the templates used to implement collections in the C++ binding, Ada generic packages
should be used to implement collections. In the Ada binding, Collection simply provides a way to
encapsulate the properties and operations common to all collection subclasses; it is not an instan-
tiate abstract data type. The proposed designs of package Collection and each of its subclasses
appear in Appendix A. Each subclass defines its own object type as new Collection.Object to

package Faculty_List is new List(Faculty.Object);

Chairman,
Vice_Chairman : Faculty.Object;

Math_Faculty_List : Faculty_List.Object :=

Faculty_List.Create;

Faculty_List.Insert_First_Element(Chairman,

Math_Faculty_List);

Faculty_List.Insert_Element_After(Vice_Chairman, 1

Math_Faculty_List);

Figure 8: Example List Instantiation and Manipulation

allow visibility to the collection properties and operations. The array collection is renamed Array.
Type to avoid illegal use of Ada keyword array. Figure 8 illustrates an example instantiation and
manipulation of a List object in Ada.

The type representation for collections is chosen here to be a subtype of System. Address. The
underlying ODBMS is therefore responsible for converting its collection type representation, thus
allowing collections to be manipulated as pointers in the Ada binding. Iterators are defined in a
similar manner.

4.3 Transactions

Package Transaction can be defined to encapsulate all transaction operations. Because a transac-
tion can be represented in several ways in an ODBMS, type Transaction. Object is best defined as
a subtype of System. Address. The underlying implementation will then be responsible for convert-
ing its particular transaction representation type to the address type. Function Begin—returning
a Transact ion. Object—along with procedures Commit_Txn, Abort_Txn, Checkpoint, and Abort.
To_Top_Level—requiring transaction parameters—may then be defined. The ODMG-93 abort op-
eration should be renamed Abort_Txn since the former is an Ada keyword. For consistency, the
commit operation be renamed Commit _Txn.

4.4 Database Operations

Package Database can be defined similar to the transaction package. Type Database .Object then
represents the address of a database file. Function Open returns the address of the file referred to
by the string parameter, and Close operates as expected. Operations Name_Object and Lookup-
Object manipulating persistent object names in the corresponding database.

Faculty_Set is new Set(Faculty.Object);
Jones_Advisors : Faculty_Set.Object :=

Faculty_Set.Select_Subcollection(
"exists S in Advisees: S.Last_Name = 'Jones'");

Figure 9: Example Collection Query

Student_Set is new Set(Student.Object);
A_Student_Set : Student_Set.Object :=

Dat abas e.Query(My_Dat abas e,
"select S " &
"from S in Students, F in Faculty " &
"where Abs(S.SSAN - F.SSAN) <= 5 and " &
"S in Relationship_One_To_Many_Traverse(F, 'Advisees')");

Figure 10: Example Database Query

5 Ada OQL

Consistent with the other ODMG-93 OQL language bindings, the loosely coupled approach is
recommended in the initial Ada binding, with predicates introduced as strings that are parsed,
optimized, and evaluated at runtime rather than at compile time. An ODBMS implementation of
Ada OQL will therefore require a runtime parser to translate the predicate from Ada syntax to the
syntax required by the underlying system.

5.1 Collection Queries

Collections can be filtered using the two operations defined for each collection generic package:
Select_Subcollection and Select-Element. Each takes the predicate string as its sole parameter.
For example, assuming extent Faculties contains all instances of object class Faculty, the query
in Figure 9 returns all Faculty instances advising a student with a last name of "Jones."

5.2 Database Queries

More complex query operations defined over an entire database should also be defined. Figure
10 illustrates an example query selecting all students whose SSANs are within 5 points of their
advisors.

subtype Object is System.Address;

procedure Name_Object(An_Object : in out Object;

Name : in String);

Figure 11: Example Address-based Operation

6 Producing and Implementing an Ada 83 Binding

We tested our Ada binding by writing vendor specific package bodies for the ObjectStore and
ITASCA ODBMS products. We used Sun Ada 83 on a Sun Sparestation 2 as the compiler. The
issues we dealt with were Ada 83's inability to model inheritance and the current lack of an ODMG-
93 standard interface for the two ODBMS products. Below we briefly discuss the Ada 83 issues
and our implementation efforts.

6.1 A New Approach: Address-based

Ada 83 requires a different approach for defining the language binding: address-based. This ap-
proach uses pointers by defining the high-level database types such as Object and Collection.Set
as a subtype of the platform-dependent System. Address. Figure 11 shows the redefinition of the
ODMG-93 construct of Figure 4 using the address-based approach.

This technique allows the definition of address parameters to and from the various ODMG-93
constructs without regard to the data they reference. If, however, an address referencing an invalid
or inappropriate data structure is passed to an ODMG operation, an exception is raised. This
method removes the need to overload operations based on all the valid data types the user may
specify; however, it does require the majority of object related error-checking to be performed at
runtime rather than at compile time.

6.2 Additional Considerations

Attribute and method definition in Ada 83 packages required a more sophisticated ODL preproces-
sor than that for Ada 9X. A convention had to first be decided upon to communicate inheritance
between packages to the preprocessor, which could then use its native constructs to make a corre-
sponding representation.

Implementing an Ada 83 binding for an ODBMS is further complicated by the nonexistence
of any commercial ODBMS implemented in Ada 83. As a result, an implementation must use a
programming language to which Ada can link using its pragma commands. If this language does
not have a mechanism for specifying inheritence, a simulation technique must be devised.

6.3 Prototype Implementation

The address-based approach mentioned in Section 6.1 was implemented using the C programming
language interface libraries for the ITASCA and ObjectStore ODBMS products [4]. Defining the

10

high-level types as subtypes of System. Address facilitated implementing the binding; however,
for the reasons stated in Section 6.2, the ObjectStore ODL preprocessor required a much greater
degree of involvement than the ODL preprocessor for ITASCA.

The primary reason for this occurrence is the strong typing of ObjectStore's implementation
language. The C language implementation accessing ObjectStore's functionality necessitated the
creation of parallel data types before attribute values could be manipulated. This required the class

of the object to be determined so that its address could be appropriately converted, all of which
must be decided at compile time. ITASCA, on the other hand, has no requirement for declaring
parallel data types. Although its functionality was accessed using the C interface, its ODBMS
implementation language is Lisp, a weakly typed language. As a result, no parallel data types
were required and attribute values could be manipulated using the object-oriented message passing
techniques for Lisp and CLOS.

Additionally, the ODBMS was required to model inheritance for Ada 83. ITASCA's ability to
functionally specify inheritance between classes allowed inherited attributes to be manipulated in
exactly the same way as non-inherited attributes. Because C cannot model inheritance, a technique
for its simulation was required. This further required the ODL preprocessor to resolve the simulation
technique when inherited attributes were accessed.

6.4 Summary of Results

Operating under the assumed existence of ODL preprocessors for each ODBMS, we were able to
produce a portable Ada database application. With the simple process of exchanging the vendor-
specific package bodies, the Ada binding and the application could be recompiled and executed using
both ObjectStore and ITASCA. The ObjectStore version could take advantage of the sophisticated
performance-based memory-mapping and clustering techniques inherent in this ODBMS1, although
its implementation was more preprocessor-dependent than its counterpart. The ITASCA version
exploited the language neutrality of its underlying system to produce an elegant and straightforward
implementation.

The ability to produce portable Ada/ODBMS applications that can take advantage of the unique
strengths of any system represents the fundamental motivation behind ODMG-93. Its evolution as
well as the evolution of the resulting language bindings will give ODBMS programmers a powerful
facility in the near future.

References

[1] ATWOOD, T., ET AL. The Object Database Standard: ODMG-93. Morgan Kaufmann Publish-
ers, San Mateo, CA, 1994.

[2] CERNOSEK, G. ROMAN-9X: A technique for representing object models in Ada 9X notation.
Association for Computer Machinery (1993), 385-406.

[3] HALLORAN, T. J. Performance measurement of three commercial object-oriented database
management systems. Master's thesis, Air Force Institute of Technology (AETC), Dec. 1993.

1See [3] for a detailed comparison of ObjectStore and ITASCA performance.

11

[4] LINDSAY, S. R. Designing and implementing an Ada language binding specification for ODMG-
93. Master's thesis, Air Force Institute of Technology (AETC), Dec. 1994.

A Proposed Ada Binding

This appendix contains our complete Ada binding for the proposed ODMG-93 standard, organized
by Ada package.

A.l Persistent

with Database;

package Persistent is

type Object is private;

type Reference is access all Object'Class;

function Create(A_Database : in Database.Object;

Clustering : in Reference := null)

return Object;

procedure Delete(An_0bject : Object);

procedure Mark_Modified(An_Object : in Object);

private

String_Max : constant := 300;

type Object is

record

Name : String(l .. String_Max);

Modified : Boolean;

end record;

end Persistent;

A. 2 Database

with System, Persistent, Collection;

package Database is

subtype Object is System.Address;

function Open_Database(Name : in String)

return Object;

procedure Close_Database(A_Database : in Object);

procedure Name_0bject(An_0bject

Name

A_Database

function Lookup_Object(Name : in String;

A_Database : in Object)

return Persistent.Object;

12

in out Persistent.Object;

in String;

in Object);

package Persistent_Collection is new

Collection(Persistent.Object);

function Query(A_Database : in Object;

Predicate : in String)

return Persistent„Collection.Object;

function Query(A_Database : in Object;

Predicate : in String)

return Persistent.Object;

end Database;

A. 3 Transaction

with System;

package Transaction is

subtype Object is System.Address;

function Start return Object;

procedure Commit_Txn(A_Transaction

procedure Abort_Txn(A_Transaction

procedure Checkpoint(A_Transaction

procedure Abort_To_Top_Level;

end Transaction;

in Object)

in Object)

in Object)

A.4 Relationships

with Persistent, Set;

package Relationships is

package Persistent_Set is new Set(Persistent.Object);

procedure Initialize;

procedure Relate_One_To_One_Create

(Relationship : in String;

An_0bject : in out Persistent.Object;

Related_Object : in out Persistent.Object);

procedure Relate_One_To_One_Delete

(Relationship : in String;

An_0bject : in out Persistent.Object);

function Relate_One_To_One_Traverse

(Relationship : in String;

An_0bject : in Persistent.Object) return Persistent.Object;

procedure Relate_One_To_Many_Create

(Relationship

An_0bject

Related_Set

in String;

in out Persistent.Object;

in Persistent_Set.Object);

13

procedure Relate_One_To_Many_Delete

(Relationship : in String;

An_0bject : in out Persistent.Object);

procedure Relate_0ne_To_Many_Add_0ne_To_0ne

(Relationship : in String;

An_0bject : in out Persistent.Object;

Object_To_Add : in out Persistent.Object);

procedure Relate_0ne_To_Many_Remove_0ne_To_0ne

(Relationship : in String;

An_0bject : in out Persistent.Object;

Object_To_Remove : in out Persistent.Object);

function Relate_One_To_Many_Traverse

(Relationship : in String;

An_0bject : in Persistent.Object) return Persistent_Set.Object;

procedure Relate_Many_To_Many_Delete

(Relationship : in String;

An_Object : in out Persistent.Object);

procedure Relate_Many_To_Many_Add_One_To_One

(Relationship

An_0bject

Object_To_Add

in String;

in out Persistent.Object;

in out Persistent.Object);

procedure Relate_Many_To_Many_Remove_One_To_One

(Relationship

An_0bject

Obj ect_To_Remove

in String;

in out Persistent.Object;

in out Persistent.Object);

procedure Relate_Many_To_Many_Add_One_To_Many

(Relationship

An_0bject

Set_To_Add

in String;

in out Persistent.Object;

in Persistent_Set.Object);

procedure Relate_Many_To_Many_Remove_One_To_Many

(Relationship : in String;

An_0bject : in out Persistent.Object;

Set_To_Remove : in Persistent_Set.Object);

procedure Relate_Many_To_Many_Remove_All_From

(Relationship : in String;

An_0bject : in out Persistent.Object);

end Relationships;

A. 5 Iterator

with System;

generic

type Collected_Object is private;

package Iterator is

14

subtype Object is System.Address;

function More(An_Iterator

procedure First(An_Iterator

An_0bject

procedure Last(An_Iterator

An_0bject

procedure Next(An_Iterator

An_0bject

procedure Reset(An_Iterator

procedure Delete(An_Iterator

end Iterator;

in Object) return Boolean;

: in out Object;

: out Collected_Object);

in out Object;

out Collected_Object);

in out Object;

out Collected_Object);
: in out Object);

: in out Object);

A. 6 Collection

with System, Iterator;

generic

type Collected_Object is private;

package Collection is

Cardinality : Integer;

Empty : Boolean;

Ordered : Boolean;

Allows_Duplicates : Boolean;

subtype Object is System.Address;

subtype Iterator_Object is System.Address;

function Create return Object;

procedure Delete(A_Collection : in out Object);

function Copy(A_Collection : in Object) return Object;

procedure Insert_Element(An_Object

A_Collection
procedure Remove_Element(An_0bject

A_Collection

function Select_Element(A_Collection

Predicate
return Collected_Object;

function Select_Subcollection(A_Collection : in Object;

Predicate : in String)
return Object;

in Collected_Object;

in out Object);

in Collected_Object;

in out Object);

in Object;

in String)

function Contains_Element(A_Collection

An_0bject
return Boolean;

in Object;

in Collected_Object)

15

function Create_Iterator(A_Collection : in Object)

return Iterator.Object;

end Collection;

A.7 Set

with System, Collection;

generic
type Collected_Object is private;

package Set is
package Set_Collection is new Collection(Collected_Object);

type Object is new Set_Collection.Object;

function Create return Object;
procedure Insert_Element(An_Object : in Collected_Object;

A_Set; : in out Object);

function Union(Set_One : in Object;
Set_Two : in Object) return Object;

function Intersection(Set_One : in Object;
Set_Two : in Object) return Object;

function Difference(Set_0ne : in Object;

Set_Two : in Object) return Object;

function Is_Subset(Set_One : in Object;

Set_Two : in Object) return Boolean;

function Is_Proper_Subset(Set_One : in Object;
Set_Two : in Object) return Boolean;

function Is_Superset(Set_One : in Object;

Set_Two : in Object) return Boolean;

function Is_Proper_Superset(Set_One : in Object;

Set_Two : in Object) return Boolean;

end Set;

A.8 Bag

with System, Collection;

generic

type Collected_Object is private;

package Bag is
package Bag_Collection is new Collection(Collected_Object);

type Object is new Bag_Collection.Object;

function Create return Object;

procedure Insert_Element(An_Object : in Collected.Object;

A_Bag : in out Object);

16

procedure Remove_Element(An_Object : in Collected_Object;

A_Bag : in out Object);

function Select_Subcollection(A_Bag : in Object;

Predicate : in String)

return Object;

function Union(Bag_One : in Object;

Bag_Two : in Object) return Object;

function Intersection(Bag_One : in Object;

Bag_Two : in Object) return Object;

function Difference(Bag_0ne : in Object;

Bag_Two : in Object) return Object;

end Bag;

A.9 List

with System, Collection;

generic

type Collected_Object is private;

package List is

Current„Position : Integer;

package List_Collection is new Collection(Collected_Object);

type Object is new List_Collection.Object;

function Create return Object;

procedure Insert_Element(An_Object : in Collected_Object;

A_List : in out Object);

function Select_Subcollection(A_List : in Object;

Predicate : in String)

return Object;

in Collected_Object;

in Integer;

in out Object);

in Collected_Object;

in Integer;

in out Object);

procedure Insert_Element_After(An_Object

Position

A_List

procedure Insert_Element_Before(An_Object

Position

A_List

procedure Insert_First_Element(An_Object : in Collected_Object;

A_List : in out Object);

procedure Insert_Last_Element(An_Object : in Collected_Object;

A_List : in out Object);

procedure Remove_Element_At(Position : in Integer;

A_List : in out Object);

procedure Remove_First_Element(A_List : in out Object);

procedure Remove_Last_Element(A_List : in out Object);

procedure Replace_Element_At(An_Object : in Collected_Object;

Position : in Integer;

17

A_List : in out Object);

function Retrieve_Element_At(Position : in Integer;

A_List : in Object)

return Collected_Object;

function Retrieve_First_Element(A_List : in Object)

return Collected_Object;
function Retrieve_Last_Element(A_List : in Object)

return Collected_Object;

end List;

A.10 Array.Type

with System, Collection;

generic
type Collected_Object is private;

package Array_Type is
package Array_Collection is new Collection(Collected_Object);

type Object is new Array_Collection.Object;

procedure Insert_Element_At(An_Object : in Collected_Object;

Position : in Integer;

An_Array : in out Object);

procedure Remove_Element_At(Position : in Integer;

An_Array : in out Object);

procedure Replace_Element_At(An_Object : in Collected_Object;

Position : in Integer;

An_Array : in out Object);

function Retrieve_Element_At(Position : in Integer;

An_Array : in Object)

return Collected_Object;

procedure Resize(New_Size : in Integer;

An_Array : in out Object);

end Array_Type;

18

RiPORT DOCUMENTATION PAGt

on oi inicrma

Dju:«^:.:r-,-..■.;.■:= :;■;■; -r-'n-non, .- ;;:32-Jj02 jrotJtli'O-' :e :>' MäH']=»»i -.na iucJgeT. ?:?cer.vcr< r'educ'ion Hro:r?c:;G^: -0133). /V^n:n^.n >-'. 20-v

1. AGENCY USE Cr.-L7 ;LS3V3 a/an*) (2. REPORT DATE

] November 1994
j 3. 3SPORT TYPE A/O DATES CCVE3EE;

] Technical Report

4. TITLE AND SUBTITLE

An Ada Binding for ODMG-93

i 5. FUNDING Nu;Vl3.E35
1

i
i

: S. AUTHORS}

| Stephen R. Lindsay, Mark A. Roth

7. ?=?f';?:M!;M<3 O^A.'ÜiEA'nON MAME(S) AMD ADCRESSiES)

Air Force Institute of Technology, WPAFB OH 45433-6583

3. PE/irCHM!^!; OZZAH'ZA.T-

AFIT/EN/TR/94-09

:C;!r" jR-MG AGENCY viA;Sic(S) AND ADCriE^usi

Capt Rick Painter
WL/AAWA
Wright Laboratory
Wright-Patterson AFB, OH 45433

11. Sü?PLE;ViEMTA,r/ M0TE3

l^^'^'i^™T*V~\TAliriTY^™T™™

Distribution Unlimited

10. iP'jiNüOrt^ui ■■ -'-'iCi'llTO

An Ada 9X binding to the proposed object database standard, ODMG-93, is presented. The major decisions
necessary for such an effort are described. The approach allows Ada programmers to use a single language to
access object-oriented database functionality regardless of vendor. Briefly mentioned is our successful feasibility
test using an Ada 83 compiler with Ada package implementations for ObjectStore and ITASCA.

14. SÜ3JECT TERMS
Object-Oriented Databases, Ada, ODMG-93, ODMG

15. NUM3EK OF PAGES

20
15. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

13. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION 20. LIMITATION OF A3STRAC7
OF ABSTRACT j

UNCLASSIFIED UL

IMSN 7540-01-280-5500 Standard Form 298 (Rsv. 2-89)
Prescribed by ANSi Sta Z39--S
298-102

